1665年牛頓做了一個實驗,在這個試驗中,牛頓使用了分光光度法:他讓太陽光透過暗室窗上的小圓孔,在室內形成很細的太陽光束,該光束經棱鏡色散后,在墻壁上呈現紅、橙、黃、綠、藍、靛、紫的色帶。這色帶就稱為“光譜”。牛頓通過這個實驗,揭示了太陽光是復合光的事實。1815年夫瑯和費仔細觀察了太陽光譜,發現太陽光譜中有600多條暗線,并且對主要的8條暗線標以A、B、C、D、E、F、G、H符號。這是人們zui早知道的吸收光譜線,被稱為“夫瑯和費線”,但當時對這些線還不能做出正確的解釋。1859年本森和基爾霍夫發現由食鹽發出的黃色譜線的波長和“夫瑯和費線”中的D線波長*一致,才知道一種物質所發射的波長(或頻率),與它所能吸收的波長(或頻率)是一致的。1862年密勒應用石英攝譜儀測定了100多種物質的紫外吸收光譜。他把光譜圖表從可見區拓展到了紫外區,并指出吸收光譜不僅與組成物質的基因有關,而且與分子和原子的性質有關。此后,哈托萊和貝利等人又研究了各種溶液對不同波段的截止波長。并發現與吸收光譜相似的有機物,它們的結構也相似。并且可以解釋用化學方法所不能說明的分子結構問題,初步建立了分光光度法的理論基礎,以此推動了分光光度計的發展。1918年美國國家標準局研制成了世界上*臺紫外可見分光光度計,此后,分光光度計得到了發展,并且很快在各個領域的分析工作中得到了應用。
分光光度計的工作原理主要是基于朗伯-比耳定律。18世紀初,瑯伯在前人的基礎上,進一步研究了物質對光的吸收與物質厚度的關系,并于1760年指出:如果溶液的濃度一定,則光對物質的吸收程度與它通過的溶液厚度成正比,這就是朗伯定律,其數學表達式為:
A=lgI。/I=K。b
式中,A為吸光度;I。為入射光強度;I為透射光強度;b為液層厚度(即光程);K。為比例常數。
1852年,比耳研究了各種無機鹽的水溶液對紅光的吸收后指出:光的吸收和光所遇到的吸光度的數量有關;如果吸光物質于不吸光的溶劑中,則吸光度和吸光物質的濃度成正比,這就是比耳定律,其數學表達式為:
A=lgI。/I=K1C
式中,A為吸光度;I。為入射光強度;I為透射光強度;C為溶液的濃度;K1為比例常數。
將朗伯定律和比耳定律結合起來,則為朗伯-比耳定律,公式如下:
A=lgI。/I=K2bC
式中,A為吸光度;I。為入射光強度;I為透射光強度;C為溶液的濃度;b為液層厚度(即光程);K2為比例常數。
朗伯-比耳定律認為:當一束光平行的單色光通過某一均勻的有色溶液時,溶液的吸光度與溶液的濃度和光程的乘積成正比,這就是朗伯-比耳定律的真正物理意義,它是光度分析中定量分析的zui基礎、zui根本的依據,也是紫外可見分光光度計的基本原理。
分光光度計正是根據朗伯-比耳定律,對物質進行定量和定性分析的。
原載于:hougr.com